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Abstract. The power law potentials in the Schrodinger equation solved recently are shown 
to come from the classical treatment of the singularities of a linear, second-order differential 
equation. This allows us to enlarge the class of solvable power law potentials. 

Considerable attention has been drawn recently to the solutions of the Schrodinger 
equation for central power law potentials: 

d2Uk//dr2+[k2- I (  1 + 1)/r2-  U (  r ) ] U k l =  0 (1) 
N 

V ( r )  = y;+, aN: rational number. 
i = l  

The set of exponents {ai} forms in general an ordered sequence of equally spaced 
numbers including the powers for the energy and centrifugal terms. 

In a series of articles Znojil(1981,1982,1983a, b, c) has set up a general procedure 
to obtain solutions to (1). In terms of classical texts (Forsyth 1959, Ince 1956) the 
procedure proposes ‘normal’ or ‘subnormal’ solutions around the singular points at 
zero and infinity. Starting from the solutions for ‘confining’ potentials (Quigg and 
Rosner 1979) with cy; 2 0 a relation can be established with the solutions corresponding 
to several other sets {a i } .  For confining potentials, one writes: 

ukl(r) = r‘ exp(--f(r))ukdr) (2) 
with f(r) a polynomial and L)k/ an analytic function. 

Znojil (1981, 1983c) has shown that the solutions proposed, whose energy eigen- 
values result from the Green function, converge. 

Examining the problem for confining potentials Znojil (1982) and Rampal and 
Datta (1983) have shown that in order to obtain polynomial solutions the coupling 
constants 7; must satisfy some constraint equations. In general, it is not possible to 
fulfil these equations, but only for certain sets {ai}. 

Other authors (Singh et a1 1979, Flessas 1981, Flessas et a1 1983, Magyary 1981, 
Khare 1981) have also obtained different solutions which turn out to be special cases 
of those from the work by Znojil and Rampal and Datta. 
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In this letter we wish to present another point of view on the same subject. This 
viewpoint is not totally new since it is based upon the classical theory of ordinary 
linear differential equations of the second order (an expression we shall abbreviate as 
OLDESO) proposed decades ago by Ince (1956) and partly exploited by Bose (1964) 
and Lemieux and Bose (1969) in pioneer work not fully appreciated. We shall show 
how all the cases treated in the literature mentioned above can be covered by the 
unifying classification proposed by Ince which allows also for new ones. 

According to Ince all OLDESO might be classified in a scheme starting from original 
ones having different fixed numbers of elementary regular singularities. These are 
defined as singular points of the general equation 

d2w/dz2+p(z)  dw/dz+q(z)w = O  (3) 

having exponents in its indicia1 equation which differ by 4. The coalescence of these 
elementary regular singularities gives rise to a new kind of singularity called regular 
if their exponents are two arbitrary numbers or irregular if it has a single exponent 
or none. A regular singularity comes from the coalescence of a pair of elementary 
regular ones, and an irregular singularity results when three or more of the elementary 
regular singularities are made to coincide. The order of an irregular singularity is j 
when it is originated from j +  2 elementary regular singular points. In Ince’s notation, 
an OLDESO may be classified as [L, M,  Nj + Nk +. . .] where L is the number of elemen- 
tary regular singularities, M is the number of regular ones, and N,, Nk, . . . are the 
numbers of irregular singular points of kinds j ,  k ,  . . . . 

Though details are given in chapter XX of Ince, let us recall that from [2N, 0, 01 
the coalescence of couples of elementary regular singularities carry onto a [0, N, 01 
equation, which should be the solution of the generalised Riemann problem. The 
usual Riemann problem with singularities at three points is N = 3, and the Whittaker 
confluent equation is obtained from it as [0, 1 ,  12]. 

From the physical point of view, the interesting cases seem to be those where in 
(1) the origin is at least a regular singular point (as long as the centrifugal term is 
present in (1) )  and infinity is always an irregular singular point, since the energy term 
must always be in place. These singularities may be produced by coalescence of simpler 
ones but another mechanism (Znojil l982,1983a, b, c) involves the use of transforma- 
tions on the independent variable (Gazeau 1980, Johnson 1980, Znojil 1982, Quigg 
and Rosner 1979). The combination of both artifacts leads to all cases analysed and 
solved in the literature for equation (1)  and also several not considered yet. This is 
the object of our work. 

The path to be followed was indicated by Bose (1964) and Lemieux and Bose 
(1969) and is also contained in Gazeau (1980) and Johnson (1980) and in the work 
by Znojil. The substitution 

w = y exp( - +  j p ( r ’ )  d r ‘ )  (4) 

brings (3) into its ‘normal’ form 

d 2 y / d r 2 + l ( r ) y = 0  ( 5 )  

I ( z )  =4(z ) -5dp(z ) /dz -~p2( r ) .  ( 6) 

where I ( r )  is called the invariant of the normal form of the equation and is given by 
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Using a generalised transformation the normal form is taken to a normal form of the 
Schrodinger equation, that is (l),  having a constant (energy) term and a centrifugal 
one. The Schrodinger equation will be for f(x) related to y ( z )  through 

y ( z )  = (dz/dx)"2f(x) (7a) 

Is(x) = (dz/dx)21(z(x))+i{z, x }  (76) 

(2, X}  = (dz/dx)-'(d3z/dx3) - $ [ ( d ~ / d ~ ) - ' ( d ~ ~ / d x ~ ) ] ~ .  (7c) 

and the invariant for (1) becomes: 

where the last term is the Schwarz derivative 

The invariant I'(x) (or I ( z ) )  contains all the information about the singularities of 
the equation. 

In the table we exhibit for N = 3,4 and 5 the potentials which can be solved knowing 
one of them and making a transformation which is also indicated for an initial [2N, 0, 01 
kind of OLDESO. It is understood that the largest positive power and/or the smallest 
negative power in the potential must have a positive coefficient. We leave the details 
for a forthcoming publication and restrict to some comments. 

For the case N = 3 we reproduce the results by Bose (1964) for the confluences 
[0, 1, 12] at zero and infinity, respectively; it is the well known Coulomb problem. Via 
z = a x 2  it transforms into the equation for the harmonic oscillator. We incorporate 
another case, that starting from 

I (  z )  = A Z - ~  + B Z - ~  + CZ-', ( 8 ~ )  
corresponding to two irregular singularities of the first kind, [0, 0,2,], at the origin 
and infinity; it goes into 

(8b) 
whose exact solutions have been studied by Spector (1964). Notice that this is of a 
kind of confluences that do not derive from regular singularities, i.e., from [0,3,0]. 

For N = 4 we have that [0,4,0] corresponds to the equation proposed by Heun 
(1889). Its polynomial solutions were studied by Erdklyi (1942a, b, 1944). The 
confluences starting from it have been considered by Maroni (1967) and Pham Ngoc 
Dinh (1968a, b, 1970) and both proved the convergence of their solutions. Lemieux 
and Bose studied Heun's equation and its confluences [0,1, 12] and [0, 0,2,]. In our 
table we also show the case [0, 0, 1' + 13] which does not belong to either of the cases 
considered by Znojil. 

For N = 5, the pattern of confluences reproduces, and now we have two new cases 
not considered before: the families for [0, 0, 1' + 15] and [0, 0,231. Notice that the 
former contains the well known Lennard-Jones potential used currently in molecular 
physics. 

Whereas the singularities produced from [0, N, 01 are the ones studied by Znojil 
and previous authors, the others are considered for a moment by Rampal and Datta 
(1983). These authors have shown that they can receive the same treatment proposed 
by Znojil but they admit no polynomial solutions. Incidentally, the polynomial solutions 
by Rampal and Datta can be obtained from the articles by Maroni and Pham Ngoc Dinh. 

Notice that the transformations studied by Johnson can scarcely have any meaning 
outside the group of solutions proposed here, since otherwise the remaining singularity 
at infinity causes trouble. 

I s ( x )  = yl /x4+ y 2 / x 2 +  k 2  
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Table 1. Potentials generated from [2N, 0, 01 by confluence. 

N = 3  
Confluence: [0,1, l,]; Invariant: I ( z ) = A / z ’ = B / z + c  
Schrodinger invariants: 
I ” ( r )  = y,r-‘+ y2r-l + k2 
I S ( r ) = y l r - 2 + k 2 + y 2 r Z  

Confluence: [0,0,2,]; Invariant: I ( z ) = A / z 3 + B / z 2 + C / z  
I s ( r ) =  y , r - 4 + y 2 r - 2 + k 2  

N = 4  
Confluence: [0,1, l,]; Invariant: I ( z ) = A / z 2 + B / z + C + D z + E z 2  
Schrodinger invariants: 
P ( r )  = ylr-2+y2r-3/2+y3r-1 +y,r-l/’+ k2 
I ‘ ( r )  = ylr-’+ y2r-,j3+ y3r-’l3+ k‘+ y4r2/’ 
I s ( r ) =  y I r - Z + y 2 r - 1 + k 2 + y 3 r + y , r 2  
I”( r )  = y, r- ’+ k2 + y 2 r 2  + y3r4+ y4r6 

Confluence: [0, 0 , l  + l,]; Invariant: I (  z )  = A / z 3 +  B / z 2  + C / z  + D+ €2 
Schrodinger invariants: 
P ( r )  = ylr-8/3+ y2r-’ -4/3+y4r-2r3+ k2  
I ’ ( r )  = y l  r - 3  + yzr-’ +;3y-‘ + k2 + y4r 
I s ( r ) =  yl r -4+y2r-2+ k Z + y 3 r 2 + y 4 r 4  
I s ( r ) =  k Z + y l r - 2 +  y4rF8 

Confluence: [0,0,22]; Invariant: I ( z ) = A / z 4 + B / z 3 + C / z 2 + D / z + €  
Schrodinger invariants: 
1 y 4 =  ~ ~ r - ~ + y ~ r - ~ + y , r - ~ + y , r - ’ + k ’  
I s ( r ) =  y1r-6+y2r-4+y3r-2+k2+y4r2 

N = 5  
Confluence: [0,1, 16]; Invariant: I ( z ) = A / z 2 + B / ~ + C + D ~ + € z 2 + F z 3 + G z 4  
Schrodinger invariants: 
I s ( r )  = ylr-‘+ y2r-5/3+y3r-4/3+y4r-1 + y5r-2/3+y6r-1’3+k2 
I “ ( r )  = ylr-2+y2r-8/5+ y 3 r - h / 5 + y 4 r - 4 / 5 + y 5 r - 2 / 5 +  k2+y6r2/5  
I s ( r ) =  y l r - 2 + y 2 r - 3 i 2 + y 3 r - 1 + y 4 r - 1 / 2 +  k2+y5r1’2+y6r2  
I “ ( r )  = y l r - 2 + y 2 r - 4 / 3 + y 3 r - 2 / 3 + k 2 +  y4r2/3+y5r4/3+y6r  
~ y r )  = y,r-’+ yzr-’ + k 2 +  y3r+ y4r2+ y5r3+ y6r4 
I s ( r )  = y1 r-’+ k2 + y2r2 + y3r4+ y4r6 + y5r8 + y6r l o  

Transformations: 
z = ar  
z = ar2 

z = ar‘ 

Transformations: 

z = ar  
z = ar2 
z = ai-’ 

= a r 2 / 3  

Transformations: 
z = a r  
z = ar2 

Confluence: [O ,O,  1, + l,]; Invariant: I ( z )  = A/z3+ B / z 2 +  C/z + D +  Ez + F z 2 +  Gz3 
Schrodinger invariants: Transformations: 
I ’ ( r )  = ylr-32/5+ y2r-‘+ y3r-8/5+ y , r ~ ~ / ~ +  y5rw4I5 + y6r-’l5+ k2  
I s ( r )  = y,r-,/’+ y 2 r - 2 + y 3 r - 3 / 2 + y 4 r - 1 + y 5 r - 1 / 2 +  k2+y6r1/’  
I s (  r )  = y, r-’l3 + y2r-’ + y3r-,l3 + y,rF2I3 + k2 + y5r2I3+ y6r4l3 

z = a r 2 / 5  

z = ar l /*  
z = er213 

Is( r )  = yI r -3+  y2r-2+ Y3r-l + k2+ y4r+ y5r2 y6r3 
I s ( r )  = y l r - 4 + y 2 r - 2 + k 2 + y 3 r 2 + y 4 r 4 + y 5 r 6 + y 6 r 8  
I S ( r )  = k2+ylr-’+ y2r-,+ y3r++ y4r-8+y5r-10+y6r-12 

Confluence: [0, 0,1,+ l,]; Invariant: I ( z )  = A/z4+B/z3+ C / Z 2 +  D / z +  E + Fz+ Gz2 
Schrijdinger invariants: Transformations 

z = ar 
z = or’ 
z = a r - 2  

I “ ( r ) =  y 1 r - 3 + y 2 r - 5 / 2 + y 3 r - 2 + y , r - 3 / 2 + y , r - 1 + y 6 r - ’ / 2 +  k2 
I s ( r )  = y,r-l0l3+ ~ ~ r - ~ / ~ + y , r - ~ +  y4r-4/3+ y5r-2/3+ k2+y6r2/3  

z = ar1/2 

z = a r 2 / 3  

I s ( r )  = y,r-,+ y2r-3+ y3r-2+ y4r-’ + k2+ y5r+ y6r2 
I s ( r ) =  ~ ~ r - ~ + y ~ r - ~ + y ~ r - ~ +  k2+y4r2+y5r4+y6r6  
I s ( r )  = y l r 2 + k 2 + y 2 r - 2 + y 3 r - 4 + y 4 r - 6 + y 5 r - 8 + y 6 r - 1 0  
I s ( r ) =  k2+ylr-1+y2r-2+y3r-3+yqr-4+ ysr-5+y6r-6 

Confluence [0, 0,2,]; Invariant: I ( z )  = A/z5 + B/z4+ C/z ’+  D / z 2  + E / z  + F + G I  
Schriidinger invariants: Transformations: 

I s ( r )  = ~ ~ r - ~ + y , r - ~ + y ~ r - ~ +  y4rw2+ y5r-‘+ k 2 +  y6r 
I “ ( r )  = ylr-’+ y2r-6+ y3r-,+ y,r-2+ k 2 +  y 5 r 2 +  y6r4 

z = a r  
z = ar2 
z = ai-‘ 
z = ar-’ 

I s ( r ) =  y,r-4+y2r-10/3+y3r-8’3+ y , r - ’ + ~ ~ r - ~ ’ ~ +  y6r- * l3+  k 2  z = a 1 2 1 3  

z = ar 
z = ar2 
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We may show (and shall do it in a forthcoming article) that a number of other 
potentials can be considered as long as we consider other transformations of variable 
than power like. 

Lemieux and Bose showed how [0, 4,0] might copy a two-centre potential, such 
as the Coulomb potential in the hydrogen ionised molecule H:. We believe that 
multi-centre potentials may equally come out of the case [0, N, 01 ( N  > 4). 

What about the equations coming from [ 2 N +  1,0 ,  O]? One can apply similar 
procedures to those outlined above, but clearly the point is that here always one 
singularity comes from an odd number of elementary regular ones. The potentials 
arising from [ 2 N +  1,0 ,0]  somehow fill gaps in our table, giving rise for instance to 
forms like 

( 9 )  

For these potentials, as remarked by Rampal and Datta (1983), no polynomial solutions 
can be found. 

One may raise the question whether all potential forms may be obtained and solved 
this way. At first sight, there are no means to include a potential with an irrational 
power, and is not evident either that any OLDESO might be solved by a normal solution. 

Summarising, the classical theory of OLDESO together with the normal solutions 
proposed by Znojil are able to be used to solve an enormous variety of potentials, 
many of physical interest, for the two body forces. It will continue to provide an 
important tool for the understanding of potential theory. 

I s ( x )  = y l / x 2 +  y 2 / x +  k 2 +  y3x. 
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